


# 中华人民共和国国家环境保护标准

HJ 546-2009

环境空气 五氧化二磷的测定 抗坏血酸还原-钼蓝分光光度法(暂行)

Ambient air—Determination of phosphorus pentoxide
—Molybdenum blue ascorbiaccid to deoxidize spectrophotometric method

2009-12-30 发布

2010-04-01 实施

# 中华人民共和国环境保护部 公告

### 2009年 第74号

为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)》等十四项标准为国家环境保护标准,并予发布。

标准名称、编号如下:

- 一、固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)(HJ 538—2009);
- 二、环境空气 铅的测定 石墨炉原子吸收分光光度法(暂行)(HJ 539—2009);
- 三、环境空气和废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)(HJ 540—2009);
- 四、黄磷生产废气 气态砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)(HJ 541—2009);
- 五、环境空气 汞的测定 巯基棉富集-冷原子荧光分光光度法(暂行)(HJ 542-2009);
- 六、固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)(HJ 543—2009);
- 七、固定污染源废气 硫酸雾的测定 离子色谱法(暂行)(HJ 544—2009);
- 八、固定污染源废气 气态总磷的测定 喹钼柠酮容量法(暂行)(HJ 545—2009);
- 九、环境空气 五氧化二磷的测定 抗坏血酸还原-钼蓝分光光度法(暂行)(HJ 546—2009);
- 十、固定污染源废气 氯气的测定 碘量法(暂行)(HJ 547—2009);
- 十一、固定污染源废气 氯化氢的测定 硝酸银容量法(暂行)(HJ 548—2009);
- 十二、环境空气和废气 氯化氢的测定 离子色谱法(暂行)(HJ 549—2009);
- 十三、水质 总钴的测定 5-氯-2-(吡啶偶氮)-1,3-二氨基苯分光光度法(暂行)(HJ 550—2009); 十四、水质 二氧化氯的测定 碘量法(暂行)(HJ 551—2009)。
- 以上标准自 2010 年 4 月 1 日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。

特此公告。

2009年12月30日

# 目 次

| 前  | 言i        | V |
|----|-----------|---|
| 1  | 适用范围      | 1 |
| 2  | 规范性引用文件   | 1 |
| 3  | 方法原理      | 1 |
| 4  | 干扰和消除     | 1 |
| 5  | 试剂和材料     | 1 |
| 6  | 仪器设备      | 2 |
| 7  | 样品        | 2 |
| 8  | 分析步骤      | 3 |
| 9  | 结果计算      | 3 |
| 10 | 质量保证和质量控制 | 3 |

## 前言

为了贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障 人体健康,规范空气中五氧化二磷的测定方法,制定本标准。

本标准规定了测定空气中五氧化二磷的抗坏血酸还原-钼蓝分光光度法。

本标准由环境保护部科技标准司组织制订。

本标准主要起草单位:北京市环境保护监测中心。

本标准环境保护部 2009 年 12 月 30 日批准。

本标准自2010年4月1日起实施。

本标准由环境保护部解释。

## 环境空气 五氧化二磷的测定 抗坏血酸还原-钼蓝分光光度法(暂行)

#### 1 适用范围

本标准规定了测定空气中五氧化二磷的抗坏血酸还原-钼蓝分光光度法。

本标准适用于空气中五氧化二磷的测定。

本标准的检出限为  $0.8~\mu g/50~ml$ ,当采样体积为  $5~m^3$ 时,检出限为  $0.2~\mu g/m^3$ ,测定下限为  $0.8~\mu g/m^3$ ;当采样体积为 300~L 时,检出限为  $0.003~mg/m^3$ ,测定下限为  $0.012~mg/m^3$ 。

#### 2 规范性引用文件

本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

HJ/T 194 环境空气质量手工监测技术规范

GB/T 6682 分析实验室用水规格和试验方法

#### 3 方法原理

用过氯乙烯等滤膜采集空气中五氧化二磷,采样后,加水与五氧化二磷生成正磷酸。在酸性介质中有酒石酸锑钾存在下,正磷酸与钼酸铵反应生成磷钼杂多酸,用抗坏血酸还原为蓝色的络合物,于 700 nm 波长处测定吸光度,即可计算出空气中五氧化二磷的含量。

#### 4 干扰和消除

当五价砷大于  $5 \mu g/ml$ 、四价硅大于  $8 \mu g/ml$ 、六价铬大于  $16 \mu g/ml$  时对本法测定有干扰,加入亚硫酸钠和硫代硫酸钠溶液可消除干扰。

#### 5 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂。水,GB/T 6682,三级。

- 5.1 硫酸:  $\rho(H_2SO_4)=1.84$  g/ml,优级纯。
- 5.2 磷酸二氢钾:  $\rho(KH_2PO_4)=2.34 \text{ g/ml}$ ,基准试剂。
- 5.3 硫酸溶液: c(1/2H<sub>2</sub>SO<sub>4</sub>)=5 mol/L。

量取 140 ml 硫酸(5.1),边搅拌边缓缓注入盛有 500 ml 水的烧杯中,冷却后,用水稀释至 1 000 ml,混匀。

5.4 钼酸铵溶液:  $\rho$  [(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>]=40 g/L。

称取 43.34 g 钼酸铵[( $NH_4$ ) $_6Mo_7O_{24} \cdot 4H_2O$ ], 溶于水,并稀释至 1 000 ml,混匀,贮存于聚乙烯塑料瓶中,于冰箱内保存。

5.5 抗坏血酸溶液:  $\rho(C_6H_8O_6)=17 \text{ g/L}$ .

称取 2.60 g 抗坏血酸,溶于水,并稀释至 150 ml,贮存于棕色瓶中。于冰箱内保存,如不变色可长期使用。

5.6 酒石酸锑钾溶液:  $\rho$  [K(SbO)C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>]=2.70 g/L。

称取 2.74 g 酒石酸锑钾[K(SbO)C<sub>4</sub>H<sub>4</sub>O<sub>6</sub> • 1/2H<sub>2</sub>O],溶于适量水中,用水稀释至 1 000 ml,混匀。

5.7 亚硫酸钠溶液: ρ(Na<sub>2</sub>SO<sub>3</sub>)=100 g/L。

#### HJ 546-2009

称取 100 g 亚硫酸钠,溶于水,移入 1 000 ml 容量瓶中,用水稀释至刻线,混匀。

5.8 硫代硫酸钠溶液:  $\rho$  (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>)=10 g/L。

称取 15.70 g 硫代硫酸钠( $Na_2S_2O_3 \cdot 5H_2O$ ),溶于水,移入 1 000 ml 容量瓶中,用水稀释至刻线,混匀。

#### 5.9 磷酸二氢钾标准贮备液

准确称取 0.191 7 g 于 105~110℃电烘箱中干燥至恒重的磷酸二氢钾 (5.2),溶于水,移入 1 000 ml 容量瓶中,用水稀释至刻线,混匀,此溶液每毫升相当于含 100.0 μg 五氧化二磷。

#### 5.10 磷酸二氢钾标准使用液

临用时,吸取 10.00 ml 磷酸二氢钾标准贮备液(5.9)于 100 ml 容量瓶中,用水稀释至刻线,此溶液每毫升相当于含 10.0 μg 五氧化二磷。也可使用有证的标准溶液。

#### 5.11 混合还原剂

临用时,分别取 40 ml 亚硫酸钠溶液 (5.7) 及硫代硫酸钠溶液 (5.8),与 20 ml 水混合均匀。

#### 5.12 混合显色剂

临用时,将 25 ml 硫酸溶液(5.3)、7.5 ml 钼酸铵溶液(5.4)和 15 ml 抗坏血酸溶液(5.5)混合在一起,加入 2.5 ml 酒石酸锑钾溶液(5.6),混匀。该显色剂在室温下只能稳定 4 h。

注1: 钼酸铵与抗坏血酸溶液混合后加入,可避免硅钼蓝生成。

注 2: 加入酒石酸锑钾可加快室温下的反应速度。

#### 6 仪器设备

除非另有说明,分析时均使用符合国家标准 A 级玻璃量器。

- 6.1 颗粒物采样器:中流量采样器,80~130 L/min;小流量采样器,10~15 L/min 或0~30 L/min。
- 6.2 可见分光光度计: 具有 3 cm 比色皿。
- 6.3 过氯乙烯等滤膜: 0.45 µm。
- 6.4 烘箱。

#### 7 样品

#### 7.1 样品的采集

#### 7.1.1 使用中流量采样器采样

采样时,将滤膜装在颗粒物采样器的滤膜夹内,以 100 L/min 流量,采样 45~60 min,并记录采样条件。采样后,将滤膜用干净的镊子取出,对叠放在样品盒中带回实验室。

#### 7.1.2 使用小流量采样器采样

采样时,将滤膜装在颗粒物采样器的滤膜夹内,以 15 L/min 流量,采样 10~20 min,并记录采样 条件。采样后,将滤膜用干净的镊子取出,对叠放在样品盒中带回实验室。

#### 7.2 样品的保存

样品应于0~4℃干燥保存,1周内测定。

#### 7.3 试样的制备

用镊子将采样滤膜从样品盒内取出,置于 50 ml 烧杯中,加入 10 ml 水,摇动烧杯使水浸润滤膜,再加入 1.0 ml 硫酸溶液(5.3),搅动并浸泡 15 min 以上,用中速定量滤纸过滤样品于 50 ml 容量瓶中,用 20 ml 水分数次洗涤烧杯及滤渣,洗涤液合并于容量瓶中。

#### 7.4 空白试样的制备

取同批号空白滤膜, 按步骤 7.3 同时操作, 制备成空白试样。

#### 8 分析步骤

#### 8.1 标准曲线的绘制

取8支50ml容量瓶,按表1配制标准系列。

表 1 五氧化二磷标准系列

| 瓶 号                 | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|---------------------|------|------|------|------|------|------|------|------|
| 磷酸二氢钾标准使用液(5.10)/ml | 0.00 | 0.10 | 0.50 | 0.90 | 1.30 | 1.70 | 2.10 | 2.50 |
| 五氧化二磷含量/μg          | 0.00 | 1.00 | 5.00 | 9.00 | 13.0 | 17.0 | 21.0 | 25.0 |

向容量瓶内分别加入  $5 \, \text{ml}$  水, $1.0 \, \text{ml}$  硫酸溶液(5.3)和  $2.5 \, \text{ml}$  混合还原剂(5.11),混匀,放置  $10 \, \text{min}$ ,加水至约  $40 \, \text{ml}$ ,加入  $8.0 \, \text{ml}$  混合显色剂(5.12),加水稀释至刻线,混匀。

室温在  $20^{\circ}$  以上,显色 25 min; 室温低于  $20^{\circ}$  时,显色 35 min。在波长 700 nm 处,用 3 cm 比色 皿,以水为参比,测定吸光度,以五氧化二磷含量( $\mu$ g)对吸光度绘制标准曲线,并计算标准曲线的回归方程。

#### 8.2 测定

于试样(7.3)和空白试样(7.4)的容量瓶中各加入2.5 ml 混合还原剂(5.11),混匀,放置10 min,以下步骤同标准曲线的绘制。

#### 9 结果计算

按式(1)计算出空气中五氧化二磷含量的质量浓度:

$$\rho(P_2O_5) = \frac{m - m_0}{V_{rd}} \tag{1}$$

式中:  $\rho(P_2O_5)$  一空气中五氧化二磷含量的质量浓度, $\mu g/m^3$ ;

*m*——由标准曲线计算得出样品滤膜上五氧化二磷的含量,μg;

 $m_0$ —由标准曲线计算得出空白滤膜上五氧化二磷的含量, $\mu g$ ;

 $V_{\rm nd}$  ——标准状态(101.325 kPa, 273 K)下所抽取空气的体积, ${\rm m}^3$ 。

#### 10 质量保证和质量控制

质量保证和质量控制应符合 HJ/T 194 的要求。采样器应在使用前进行气密性检查和流量校准,采样和分析过程中不要用手指触摸滤膜,防止带入污染。

3

## 中华人民共和国国家环境保护标准 环境空气 五氧化二磷的测定 抗坏血酸还原-钼蓝分光光度法(暂行) HJ 546—2009

\*

中国环境科学出版社出版发行
(100062 北京崇文区广渠门内大街 16 号)
网址: http://www.cesp.com.cn
电话: 010-67112738

北京市联华印刷厂印刷

版权所有 违者必究

\*

2010 年 3 月第 1 版 开本 880×1230 1/16 2010 年 3 月第 1 次印刷 印张 0.75

字数 30千字 统一书号: 135111•059

定价: 12.00元