

中华人民共和国国家环境保护标准

HJ 539—2009

环境空气 铅的测定 石墨炉原子吸收分光光度法 (暂行)

Ambient air-Determination of lead-Graphite furnace atomic absorption spectrometry

本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。

2009-12-30发布

2010-04-01实施

环境保护部 发布

目 次

前	言	II
	适用范围	
	规范性引用文件	
3	方法原理	1
	试剂和材料	
	仪器和设备	
	样品	
7	分析步骤	3
8	结果计算	3
	质量保证和质量控制	

前 言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范环境空气中铅的监测方法,制定本标准。

本标准规定了测定环境空气中铅的石墨炉原子吸收分光光度法。

本标准由环境保护部科技标准司组织制订。

本标准起草单位:北京市环境保护监测中心。

本标准环境保护部 2009 年 12 月 30 日批准。

本标准自2010年4月1日起实施。

本标准由环境保护部解释。

环境空气 铅的测定

石墨炉原子吸收分光光度法 (暂行)

1 适用范围

本标准规定了测定环境空气中铅的石墨炉原子吸收分光光度法。

本标准适用于环境空气中铅的测定。

方法检出限为 $0.05\mu g/50ml$ 试样溶液,当采样体积为 $10m^3$ 时,检出限为 $0.005\mu g/m^3$,测定下限为 $0.020\mu g/m^3$ 。

2 规范性引用文件

本标准内容引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法

HJ/T 194 环境空气质量手工监测技术规范

3 方法原理

用乙酸纤维或过氯乙烯等滤膜采集环境空气中的颗粒物样品,经消解后制备成试样溶液,用石墨炉原子吸收分光光度计测定试样溶液中铅的浓度。

4 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂;实验用水,GB/T 6682,二级。

- 4.1 硝酸: ρ(HNO₃)=1.42 g/ml, 优级纯。
- 4.2 过氧化氢: $ω(H_2O_2)=30\%$,优级纯。
- 4.3 氢氟酸: $\omega(HF)=40\%$, 优级纯。
- 4.4 硝酸溶液: 1+9。 用硝酸(4.1)配制。
- 4.5 硝酸溶液: l+1。 用硝酸(4.1)配制。
- 4.6 硝酸溶液: φ(HNO₃)= 1%。用硝酸(4.1)配制。
- 4.7 硝酸-过氧化氢混合液: 1+1。用硝酸(4.1)和 30%过氧化氢(4.2)配制。

4.8 铅标准贮备液: ρ(Pb)=1.00mg/ml。

称取 21.599g Pb(NO₃)₂(110℃烘干 2h)溶于水中,用(1+9)硝酸溶液(4.4)定容至 1000ml。铅标准贮备液也可使用市售有证标准溶液。

4.9 铅标准使用液: ρ(Pb)=0.5μg/ml。

将铅标准贮备液(4.8) 用 1%HNO₃(4.6)逐级稀释后, 配制成含铅 $0.5\mu g$ /ml 的标准使用溶液。

4.10 氡气: 纯度不低于 99.9%。

5 仪器和设备

除非另有说明,分析时均使用符合国家标准的A级玻璃仪器。

- 5.1 中流量采样器: 流量范围(80~130)L/min。
- 5.2 乙酸纤维或过氯乙烯滤膜等滤膜: 0.45μm。要求滤膜空白含铅量低,且空白值稳定。
- 5.3 石墨炉原子吸收分光光度计。
- 5.4 电热板。
- 5.5 聚四氟乙烯烧杯。

6 样品

6.1 样品的采集

按《环境空气 总悬浮颗粒物的测定 重量法》(GB/T 15432)步骤进行样品采集,用中流量采样器以 100L/min 流量,采集滤膜样品 10m³,当铅浓度过低,可适当增加采样体积,采样同时应详细记录采样条件。

6.2 样品的保存

滤膜样品采集后对折放入干净纸袋或膜盒中,放入干燥器中保存。

6.3 试样的制备

取适量样品滤膜剪成小块,置于聚四氟乙烯烧杯中,加入(1+1)硝酸-过氧化氢混合液 (4.7)10ml 浸泡 2h 以上,加热至微沸(勿使其崩溅),保持 10min,冷却。滴加 40%氢氟酸 (4.3)2ml,加热蒸至近干,使氢氟酸挥发殆尽,冷却。加(1+9)硝酸溶液(4.4)5ml,加热使残 渣溶解,冷却。将溶液转移至 50ml 容量瓶中,再用水稀释至标线。

注: 在样品预处理过程中,用硝酸一过氧化氢混合液(4.7)加热后,若滤膜消解完全,可不加氢氟酸, 若使用石英纤维滤膜,也不加氢氟酸。

6.4 空白试样的制备

取同批号等面积滤膜两个,和样品同时处理操作,制备成空白试样。

7 分析步骤

7.1 石墨炉原子吸收分光光度计工作条件

仪器参数可参照说明书进行选择,表1所列条件和参数供参考。

表 1 石墨炉原子吸收分光光度法工作条件

波长	283.3 nm		
灯电流	8mA		
狭缝	0.7nm		
干燥温度与时间	90℃, 15s; 120℃, 15s。两级干燥		
灰化温度与时间	700°C 20s		
原子化温度与时间	1900℃ 5s		
清洗温度与时间	2600°C 5s		

7.2 标准曲线的绘制

7.2.1 标准系列的配制

取 7 个 50ml 容量瓶,按表 1 配制铅标准系列。用 1%硝酸溶液(4.7)稀释至标线,摇匀。 表 1 铅标准系列

瓶号	0	1	2	3	4	5
铅标准使用液(ml)	0	1.00	2.00	3.00	4.00	5.00
铅浓度(μg/L)	0.0	10.0	20.0	30.0	40.0	50.0

7.2.2 绘制标准曲线

向石墨管中移入 20μl 标准工作溶液,按照选定的仪器工作条件,测定铅标准系列的吸 光度,并计算标准曲线的线性回归方程。

注: 当样品的背景很高,可考虑加 0.2mg 磷酸二氢铵($NH_4H_2PO_4$)作为基体改进剂,适当提高灰化 温度,消除基体干扰。

7.3 试样测定

按标准曲线绘制时的仪器工作条件和操作步骤,分别测定试样(6.3)和空白试样(6.4)的吸光度。

8 结果计算

根据所测的吸光度值,由线性回归方程计算出试样和空白试样中铅的浓度,并由下式计算环境空气中铅的浓度($\mu g/m^3$)。

$$\rho \text{ (Pb)= } \frac{(\rho_1 - \rho_0) \times 50}{V_n \times 1000} \times \frac{S_r}{S_a}$$
 (1)

式中:

 ρ (Pb)——环境空气中铅的浓度(μg/m³);

 ρ_1 ——试样中铅浓度, μ g/L:

- ρ_0 ——空白试样中铅浓度的平均值, μ g/L;
- 50——试样溶液体积, ml;
- S_t ——样品滤膜总面积, cm²;
- S_a ——测定时所取样品滤膜面积, cm^2 。
- V_n ——标准状态(101.325kPa, 273K)下的采样体积, m^3 ;

9 质量保证和质量控制

- 9.1 质量保证和质量控制按《环境空气质量手工监测技术规范》(HJ/T 194)相关规定执行。
- 9.2 全部器皿在使用前要用(1+9)硝酸溶液浸泡过夜或用(1+1)硝酸溶液浸泡 40min,以除去器壁上吸附的铅。

4